12 Saal – Bilal Saeed

Anytime the user surfs the web, sends an e-mail or instant messages someone, an implanted JitterBug could be timed to open a covert jitter channel to send stolen data. According to Shah, a JitterBug could not log and transmit every touch of the key due to limited storage space on the device, but it could be primed to record a keystroke with a particular trigger.
"For example, one could pre-program a JitterBug with the user name of the target as a trigger on the assumption that the following keystrokes would include the user's password," Shah said. "Triggers might also be more generic, perhaps programmed to detect certain typing patterns that indicate some sort of important information might follow."
JitterBugs are potentially worrisome to governments, universities or corporations with information meant to be kept confidential. One particular scenario is what Blaze refers to as a "Supply Chain Attack," in which the manufacture of computer peripherals could be compromised. Such an attack could, for example, result in a large number of such JitterBugged keyboards in the market. An attacker would only then need to wait until a target of interest acquires a bugged keyboard.
According to Shah, the channel through which the JitterBug transmits data is also the point where it could be most easily detected and countered.
While his presentation only discussed simple countermeasures to JitterBugs, Shah's initial results indicate that the use of cryptographic techniques to hide the use of encoded jitter channels might be a promising approach.
"We normally do not think of our keyboard and input devices as being something that needs be secured; however, our research shows that if people really wanted to secure a system, they would also need to make sure that these devices can be trusted," Shah said. "Unless they are particularly paranoid, however, the average person does not need to worry about spies breaking into their homes and installing JitterBugs."
Funding for this research was provided through grants received by Blaze from the National Science Foundation's Cybertrust program.
Copyright © 2012 TIme Pass...!!!. All rights reserved.|